search for   

 

Analysis of Quinolone Resistance Determinants in Escherichia coli Isolated from Clinical Specimens and Livestock Feces
Korean J Clin Lab Sci 2018;50:422-430  
Published on December 31, 2018
Copyright © 2018 Korean Society for Clinical Laboratory Science.

Ji Youn Sung

Department of Biomedical Laboratory Science, Far East University, Eumseong, Korea
Correspondence to: Ji Youn Sung
Department of Biomedical Laboratory Science, Far East University, 76-32 Daehak-gil, Gamgok-myeon, Eumseong 27601, Korea
Tel: 82-43-879-3668 Fax: 82-43-880-3876 E-mail: azaza72@naver.com
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract
The inappropriate and widespread use of quinolones in humans and animals may cause accelerated emergence and spread of antimicrobial-resistant determinants. In this study, we investigated quinolone resistance mechanisms in a total of 65 nalidixic acid-resistant E. coli isolated from swine rectal swabs (N=40) and clinical specimens (N=25). Antimicrobial susceptibilities were determined by the disk diffusion method. PCR and DNA sequencing were performed for investigations of genes and mutations associated with quinolone resistance. In our study, 62 of 65 nalidixic acid-resistant E. coli harbored mutations in gyrA, parC, and/or parE genes; of the 65 isolates, 62 (95.4%) had mutations in the gyrA gene, 35 (53.8%) had mutations in the parC gene, 7 (10.8%) had mutations in the parE gene. The 35 isolates harbored mutations in two genes, gyrA and parC. Plasmidmediated quinolone resistance (PMQR) determinants were investigated in the 65 isolates. Thirteen of 65 nalidixic acid-resistant E. coli contained the qnrS gene and 10 of those isolates had mutations in the gyrA, parC, and/or parE genes. We confirmed that an important mechanism of quinolone resistance in E. coli isolated from human and swine involves chromosomal mutations in the gyrA, parC, and/or parE genes with increasing use of quinolone for treatment or additives
Keywords : E. coli, gyrA, parC, Plasmid-mediated quinolone resistance

December 2018, 50 (4)
Full Text(PDF) Free

Cited By Articles
  • CrossRef (0)

Funding Information